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1. Introduction

The attractor mechanism was first discovered in the context of supersymmetric black holes

(BH) in N = 2, d = 4 supergravity coupled to vector multiplets [1 – 3]. In essence, it means

that the near horizon geometry of the black holes does not change under smooth variations

of the asymptotic values of the various scalar fields (moduli). In particular, the values of the

moduli at the horizon are independent of the asymptotic values of the scalars and, instead,

are completely determined by the BH electric and magnetic charges via a set of algebraic

equations, called attractor equations. Subsequently, this kind of behaviour was established
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for black holes in various extended supergravities and in different dimensions. For recent

reviews see [4 – 6]; the enormous amount of literature on the topic is referenced therein.

It was realized in [7] that there is a technical similarity between the situation for

BH attractors in N = 2, d = 4 and flux vacua compactifications of type IIB on CY(3)

with O(3)/O(7) planes. More precisely, the relevant scalar potentials in the two cases

have very similar forms and, in addition, in both cases the moduli spaces have special

Kähler geometry; although the latter property is not present for a generic N = 1, d = 4

supergravity, in this context it is inherited from the N = 2 theory, obtained from IIB on

a CY 3-fold without orientifolding. Inspired by this similarity, Kallosh argued that in the

IIB case one can also write down attractor equations or, in other words, that for IIB CY(3)

orientifolds the minimization of the effective N = 1 supergravity potential is equivalent to

solving a simplified system of attractor equations.

Apart from being an interesting observation, the flux vacua attractors of [7] are po-

tentially of significant importance for the problem of moduli stabilization in string theory.

The latter is a long-standing problem whose resolution has only started taking shape in

recent years. The issue is that string compactifications on CY 3-folds have many allowed

deformations of the internal space, which do not cost any energy. Those deformations

manifest themselves in 4d as scalar fields without a potential, called moduli. Since the

various parameters of the four-dimensional effective theory (coupling constants, for exam-

ple) depend on those moduli, the arbitrary values that the latter can take lead to lack of

predictability of string theory.

This problem can be resolved by considering background fluxes [8, 9] and perturba-

tive [10] and/or non-perturbative effects [11] that induce a potential for the moduli. For

a comprehensive review on flux compactifications, see [12]. However, generically turning

on background fluxes deforms the internal manifold away from Calabi-Yau. The result-

ing internal geometry can be described most efficiently in the language of SU(3) × SU(3)

structures. These are the most general type II compactifications that give an effective

N = 2 theory in 4d [13, 14]. The N = 1 vacua in this context, studied in [15], are a vast

generalization of the IIB orientifolds considered in [7]. Unlike the IIB orientifolds though,

the superpotential in these generalized compactifications depends on all relevant geometric

moduli and so, in principle, it is possible to achieve moduli stabilization at the classical level.

SU(3)×SU(3) structure spaces are characterized by a pair of pure SO(6, 6) spinors Φ+

and Φ−, which for a CY(3) reduce to the familiar Kähler form J and holomorphic 3-form

Ω. In general Φ+ (Φ−) is a sum of even (odd) forms of different degrees. It was shown

in [16, 13, 14, 17] that the deformation spaces of Φ+ and Φ− have special Kähler geometry.

So it is a natural question to ask whether the new attractors of [7] can be extended to (at

least some cases) of type II on SU(3)×SU(3) structure spaces. A positive answer would be

of great value for the study of moduli stabilization in these compactifications. The reason is

that generically the attractor equations are (significantly) simpler than the conditions one

obtains directly from minimizing the scalar potential. In this paper we will explore whether

there are attractors for N = 1 flux vacua in those generalized type II compactifications.

A more familiar special case of generalized geometry is provided by spaces with SU(3)

structure. Type II on such non-Kähler manifolds can be obtained from the SU(3)× SU(3)
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structure case by taking the diagonal SU(3) subgroup. For the heterotic string, however,

the SU(3) structure compactifications are the most general ones, since the heterotic super-

symmetry transformations are only sensitive to a single internal spinor.1 Clearly, heterotic

non-Kahler compactifications provide another natural context, in which to search for gen-

eralizations of the flux vacua attractors of [7]. In fact, this issue was already addressed

in [20]. Although that reference has a very good intuition, we disagree with the details.

The reason things are more subtle than anticipated in [20], is the following. A key ingre-

dient in Kallosh’s argument for IIB attractors is the generic expansion, derived in [23], of

a suitable four-form flux in terms of basic geometric structures of a related CY(4). Now,

generalized geometry structures are in principle much less understood than CY manifolds.

And, in particular, the analogue of the expansion of [23] for the generalized case has not

been established yet. So the approach to follow is to make a proposal and then verify that

it works. In order to accomplish the latter step, it is very helpful to understand analytically

how the new attractors satisfy the relevant supersymmetry conditions.2 So far, this has

only been checked by numerical methods [21] and, as a result, it was not particularly clear

which properties of the IIB CY orientifolds are essential and which are accidental regarding

the existence of the new attractors. We perform an explicit analytical verification that the

flux vacua attractors of [7] give supersymmetric minima of the relevant scalar potential.

In doing so, we are led to the realization that a necessary condition is not satisfied in the

single-Kähler-modulus conjecture of [20] for heterotic non-Kähler attractors. Despite that,

we show that a slight modification of another proposal of [20] gives heterotic attractors for

Minkowski vacua in the case of arbitrary number of Kähler moduli.3 Furthermore, we also

find flux vacua attractor equations for type IIA/B on SU(3) × SU(3) structure, although

only for Minkowski vacua.

The present paper is organized as follows. In section 2 we give some useful background

material. In Subsection 2.1 we collect a few necessary properties of special Kähler geometry

and in Subsection 2.2 we briefly review the well-known BH attractors. In section 3 we ex-

plain in more detail the motivation for and the derivation of the flux vacua attractors in type

IIB CY(3) orientifold compactifications [7]. In section 4 we verify analytically that these

attractor equations give solutions of the relevant supersymmetry conditions. In section 5 we

explore the possibilities for generalization. In Subsection 5.1 we study the heterotic string

on non-Kähler manifolds. After reviewing some necessary properties of these compactifica-

tions, we scrutinize the conjecture of [20] and we establish the existence of heterotic attrac-

tors for Minkowski vacua. In Subsection 5.2 we investigate type IIA/B on SU(3) × SU(3)

structure spaces. We start by reviewing some necessary properties. Then we recall the

known results for the superpotential and Kähler potential of generic N = 1 trunctions and

1I.e., even if the internal manifold has SU(3) × SU(3) structure, the heterotic string still feels only a

single linear combination of the two internal spinors and so is effectively compactified only on an SU(3)

structure manifold. We thank D. Waldram for a valuable discussion on this point.
2Throughout this paper we only consider supersymmetric attractors.
3Note that at the classical level the heterotic string has only Minkowski flux vacua, unlike type II

strings. In order to obtain heterotic AdS vacua, one has to include quantum effects like, for example,

gaugino condensation; see [24].
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find supersymmetric attractor equations, for Minkowski vacua only. Finally, in appendix

A we present a technical computation, which completes the considerations of section 4.

2. Preliminaries

In this section we review some properties of special Kähler geometry, that will be needed

throughout the paper. Also, as a useful preparation for the flux vacua attractors, we outline

the derivation of the attractor equations for black holes in N = 2, d = 4 supergravity

coupled to n vector multiplets.

2.1 Special Kähler geometry

In a coordinate-independent way, a 2n-real-dimensional special Kähler manifold is defined

in terms of a symplectic section

(LΛ,MΛ) , Λ = 0, 1, . . . , n (2.1)

of an Sp(2n + 2) vector bundle over a Hodge-Kähler manifold, such that

i(L̄ΛMΛ − LΛM̄Λ) = 1 . (2.2)

LΛ and MΛ are covariantly holomorphic functions of the coordinates {ti, t̄ī}, also called

moduli, that parametrize the special Kähler manifold. In other words,

DīL
Λ = (∂ī −

1

2
Kī)L

Λ = 0 , (2.3)

where clearly Dī is the Kähler covariant derivative. Also, DiL
Λ = (∂i + 1

2Ki)L
Λ and

similarly for MΛ. The relation between (LΛ(t),MΛ(t)) and the holomorphic section

(XΛ(t), GΛ(t)) is the following:

LΛ = eK/2XΛ , MΛ = eK/2GΛ , (2.4)

where ∂īX
Λ = 0 and ∂īGΛ = 0. The Kähler potential is given by

K = − ln i(X̄ΛGΛ −XΛḠΛ) , (2.5)

as can be seen from (2.2) and (2.4). From special geometry one has:

MΛ = NΛΣL
Σ , DiMΛ = NΛΣDiL

Σ , (2.6)

where NΛΣ is a complex symmetric (n+ 1)× (n+ 1) matrix. Note that the Kähler weight

of NΛΣ is 0, meaning that DiNΛΣ = ∂iNΛΣ. We will also need the following relations [22]:

NΛΣ = ḠΛΣ + 2i
(ImGΛΓ)(ImGΣΠ)LΓLΠ

(ImGΞΩ)LΞLΩ
(2.7)

and

ImGΛΣ L
ΛDīL̄

Σ = 0 . (2.8)

For more details on special Kähler geometry see [22].

– 4 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
7

2.2 BH attractors

Let us now briefly recall the well-known BH attractor equations [2]. To derive them, one

considers the central charge

Z = qΛL
Λ − pΛMΛ , (2.9)

which is a function of the moduli ti, t̄ī and the black hole electric and magnetic charges pΛ

and qΛ respectively. This function determines the black hole potential via

VBH = |Z|2 + |DiZ|2 . (2.10)

The supersymmetric critical points of VBH are given by the solutions of

DiZ =

(

∂i +
1

2
Ki

)

Z = 0 . (2.11)

Using that ∂īNΛΣ L
Σ = 0 [22], one can solve the central charge minimization condition

DīZ̄ = qΛDīL̄
Λ − pΛNΛΣDīL̄

Σ = 0 (2.12)

for the charges in terms of the moduli. The result is the BH attractor equations [2]:

pΛ = i(Z̄LΛ − ZL̄Λ) , qΛ = i(Z̄MΛ − ZM̄Λ) , (2.13)

where the right hand side is understood to be evaluated at the BH horizon (more precisely,

at a fixed point in the near horizon geometry). Clearly, this also implies that the values of

the moduli at the horizon are fixed in terms of the BH charges.

3. New attractors

In [7], Kallosh formulated a generalization of the attractor equations (2.13) for the case of

type IIB CY(3) orientifold compactifications. The motivation for this is the following. The

supergravity potential for the effective N = 1, d = 4 description,

V = |DZ|2 − 3|Z|2 with Z = e
K
2 W , (3.1)

is very similar to (2.10) and, furthermore, the N = 1 theory inherits certain special geom-

etry properties from the N = 2 one, obtained by compactifying type IIB on a CY(3). In

order to be able to state the new attractor equations, let us first recall a few useful facts

about the special Kähler geometry of type IIB CY compactifications.

3.1 Type IIB on a CY(3)

We denote by αa and βa the basis of CY 3-forms and by (Aa, Ba) their dual 3-cycles. Then

the holomorphic sections are given by

Xa(z) =

∫

Aa

Ω and Ga(z) =

∫

Ba

Ω , (3.2)
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where Ω is the holomorphic 3-form of the CY manifold and zi are the complex structure

moduli.4 In terms of an expansion in (αa, β
a), one can write:

Ω = Xaαa −Gaβ
a . (3.3)

The Kähler potential for the complex structure moduli of the CY is

K = − ln i

∫

Ω ∧ Ω̄ = − ln i
(

X̄aGa −XaḠa

)

. (3.4)

Before turning to the flux vacua attractor equations of [7], it is useful to recall a

derivation of the BH attractors in the context of black holes in IIB compactifications on

CY(3) [3, 7].5 In this context the central charge is

Z = e
K
2

∫

H ∧ Ω , (3.5)

where H is the NS 3-form flux. We can expand the latter in the (αa, β
a) basis:

H = paαa − qaβ
a . (3.6)

However, we can also write H in the following way:

H = i[Z̄Ω̂ −Kij̄(Dj̄Z̄)DiΩ̂] + c.c. , (3.7)

where Ω̂ = e
K
2 Ω and there are no terms proportional to DiDjΩ̂ because the latter can

be expressed in terms of D̄ī
¯̂
Ω due to special geometry. Now, since in a supersymmetric

minimum DiZ = 0, for black hole attractors the above expression for H becomes:

H = i(Z̄Ω̂ − Z
¯̂
Ω) . (3.8)

Using (3.3), (2.4) and (3.6), one can immediately see that (3.8) gives precisely the attractor

equations (2.13).

3.2 Flux vacua attractors

The idea in [7] is to use for flux compactifications an expansion of the fluxes analogous

to (3.7) and, by evaluating its right-hand side at the flux vacua, to obtain attractor equa-

tions like (3.8). The equations, that one obtains in this way, are then equivalent to the

minimization of the scalar potential in this class of flux compactifications. More pre-

cisely, [7] considers type IIB on a CY(3) with O3/O7 planes. In this case, the RR and NS

3-form fluxes can be decomposed as:

H = pa
hαa − qhaβ

a and F = pa
fαa − qfaβ

a . (3.9)

4As in [7], we use different notation for the indices and moduli in the IIB CY orientifold case, in order

to distinguish it from the general discussion in section 2.
5This is different from the original derivation in [2].
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The superpotential of the effective N = 1 four-dimensional theory is:

W =

∫

(F − τH) ∧ Ω = (qfa − τqha)X
a − (pa

f − τpa
h)Ga , (3.10)

where τ is the axion-dilaton. The Kähler potential for τ and for the complex structure

moduli is:

K = − ln[−i(τ − τ̄)] − ln[i

∫

Ω ∧ Ω̄] . (3.11)

Similarly to before, one takes the central charge to be:

Z = e
K
2 W = e

K
2

∫

[F ∧ Ω +H ∧ (−τΩ)] . (3.12)

In order to write attractor equations, one needs to extend special geometry to the

moduli space containing both the axion-dilaton and the complex structure moduli. To do

that, Kallosh introduces new symplectic sections,

Ξ =

(

Ξ1

Ξ2

)

=

(

Ω

−τΩ

)

, (3.13)

in terms of which one can write:

K = − ln

[
∫

(Ξ1 ∧ Ξ̄2 − Ξ2 ∧ Ξ̄1)

]

and Z = e
K
2

∫

(F ∧ Ξ1 +H ∧ Ξ2) . (3.14)

Now, using that at a supersymmetric minimum DAZ = 0 with A = τ, i and taking

DADBZ = 0 as in special geometry, Kallosh infers that the attractor equations for flux

vacua, analogous to (3.8), are:











pa
h

qha

pa
f

qfa











= eK











W̄Xa +WX̄a

W̄Ga +WḠa

τW̄Xa + τ̄WX̄a

τW̄Ga + τ̄WḠa











, (3.15)

where the right-hand side is understood to be evaluated at the susy minima. However,

as pointed out in [7], the extended moduli space containing the axion-dilaton is described

by special geometry only partially. More precisely, DADBZ does not have to vanish in

general. When DADBZ 6= 0, it is useful to introduce the following notation:

F4 = −α ∧ F + β ∧H ,

∫

T 2

α ∧ β = 1 , (3.16)

where T 2 is the auxiliary torus in the F-theory description of type IIB vacua (i.e., as

F-theory compactifications on CY 4-folds of the form CY (4) = (CY (3) × T 2)/Z2 ). Then

the expansion

F4 = Z̄Ω̂4 − D̄AZ̄DAΩ̂4 + D̄0I Z̄D0IΩ̂4 + c.c. , (3.17)

– 7 –
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derived in [23] (see also [25]), implies according to [7] the generalized attractor equations:











pa
h

qha

pa
f

qfa











=











Z̄La + ZL̄a

Z̄Ma + ZM̄a

τZ̄La + τ̄ZL̄a

τZ̄Ma + τ̄ZM̄a











+











Z̄0IDIL
a + Z0ID̄I L̄

a

Z̄0IDIMa + Z0ID̄IM̄a

τ̄ Z̄0IDIL
a + τZ0ID̄I L̄

a

τ̄ Z̄0IDIMa + τZ0ID̄IM̄a











. (3.18)

As before, the right-hand side is understood to be evaluated at the supersymmetric flux

vacua. Also, here A = (0, I) are flat indices associated with the orthonormal frame eâA

such that g
â
¯̂
b
eâAe

¯̂
b
B̄

= δAB̄ , where the curved indices are â = (0, i) with 0 corresponding to

τ and i to the complex structure moduli. In particular, Z0I = D0DIZ with D0 = e
0
τDτ

and DI = eIiD
i. In (3.17), Ω̂4 is given by Ω̂4 = Ω̂1∧ Ω̂, where Ω̂ = e

KCS
2 Ω is the covariantly

holomorphic 3-form of the CY(3) and Ω̂1 is a covariantly holomorphic 1-form on the

T 2. Finally, in (3.18) La = eK/2Xa with K given in (3.11) and similarly for Ma. Thus,

unlike (2.2), now we have i(L̄aMa − LaM̄a) = eK(τ) , where K(τ) = − ln[−i(τ − τ̄)]. For a

more detailed review of the new attractors of [7], see [5].

As already mentioned in the introduction, it will be of great use for the generalization

to heterotic on SU(3) structure and type II on SU(3) × SU(3) structure spaces to have

an analytical understanding of how the new attractor equations (3.15) and (3.18) give

solutions to the supersymmetry conditions DZ = 0. To the best of our knowledge, such

an explicit analytical verification has not been written down so far in the literature (for a

numerical check see [21]). In the next section we will fill this gap.

4. Verifying new attractors

In this section we will show by analytical means that the new attractor equations imply

automatically the supersymmetry conditions DAZ = 0, where A = zi, τ . Although this is

just a confirmation of the derivation of [7], it will be of great use for the generalizations that

we will turn to in section 5. Now, in the DADBZ = 0 case we will see that the flux vacua

attractors can be derived in pretty much the same way as the BH attractor equations.

However, the general DADBZ 6= 0 case is more involved and we will only be able to verify

that, when the new attractors hold, the supersymmetry conditions are satisfied. In both

cases, though, it will become clear that, in addition to special Kähler geometry, there is

another property that is of crucial importance. Namely, this is the particular form of the

Kähler potential for the axion-dilaton.

4.1 DADBZ = 0 case

Let us first consider (3.15). To see how these equations follow from (3.14), let us rewrite

the Kähler potential in (3.14) in such a way that it acquires the same form as in (3.4):

K = − ln[X̄a(τGa) +Xa(τ̄ Ḡa) − (τXa)Ḡa − (τ̄ X̄a)Ga]

= − ln[i(X̄aG̃a −Xa ¯̃Ga) + i( ¯̃XaGa − X̃aḠa)] , (4.1)

– 8 –
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where we have introduced the notation X̃a = −iτXa and G̃a = −iτGa. Note that, unlike

the BH case in which Xa and Ga were paired, now the pairs of sections are (Xa, G̃a) and

(X̃a, Ga). In terms of these, the superpotential (3.10) becomes:

W = qfaX
a − (−ipa

h)G̃a + (−iqha)X̃
a − pa

fGa . (4.2)

It is clear now that for the doubled sections Xa′

= (Xa, X̃a) and Ga′ = (G̃a, Ga) and the

electric and magnetic charge vectors qa′ = (qfa,−iqha) and p a′

= (−ipa
h, p

a
f ) one has exactly

the same situation as for the original BH attractors,subsection 2.2. Hence, one can derive

the generalized attractor equations (3.15) from the susy conditions DiZ = 0 in exactly the

same way that equations (2.13) were derived in [2]. One finds:6











−ipa
h

qfa

pa
f

−iqha











= i eK











−(W̄Xa +WX̄a)

W̄ G̃a −W ¯̃Ga

W̄ X̃a −W ¯̃Xa

−(W̄Ga +WḠa)











. (4.3)

Substituting X̃a = −iτXa, G̃a = −iτGa in the above expressions and rearranging the

order of the rows, one obtains exactly (3.15).

This derivation is so simple that one may be tempted to think that the generalization

of the BH attractor equations to N = 1 flux vacua in type IIB is a mere triviality. However,

once we turn to the more general case, namely equations (3.18), it will be clear that this

is not so. In fact, one can already see at this stage that things are nontrivial by noticing

that we have obtained (3.15) without using the DτZ = 0 equation. So we still need to

show that the latter is satisfied when equations (3.15) hold. To do that, let us first write

the central charge as:

Z = e
K
2

∫

(F − τH) ∧ Ω = (qfa − τqha)L
a − (pa

f − τpa
h)Ma

= qfaL
a − iqhaL̃

a − pa
fMa + ipa

hM̃a , (4.4)

where we have defined L̃ and M̃ in the same way as X̃ and G̃ above, i.e. L̃a = −iτLa and

M̃a = −iτMa. Then we have:

DτZ = qfaDτL
a − iqhaDτ L̃

a − pa
fDτMa + ipa

hDτM̃a . (4.5)

Note that La(τ, zi) and Ma(τ, z
i) are related to Xa(zi) and Ga(z

i), respectively, via the

total Kähler potential (3.11). Therefore

DτL
a =

(

∂τ +
1

2
Kτ

)

La = KτL
a (4.6)

and similarly DτMa = KτMa. Using the latter relations, together with Dτ L̃
a = −iLa −

iτDτL
a and DτM̃a = −iMa − iτDτMa, and substituting the charges from (3.15) we find:

DτZ = (τZ̄Ma + τ̄ZM̄a)KτL
a − (Z̄Ma + ZM̄a)(1 + τKτ )L

a

−(τZ̄La + τ̄ZL̄a)KτMa + (Z̄La + ZL̄a)(1 + τKτ )Ma

= −iZ(1 − τ̄Kτ + τKτ )e
K(τ) , (4.7)

6Clearly, the derivation of [2] is modified (in an obvious way) for the purely imaginary charges −ipa
h

and −iqha.
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where in the second equality we have used that i(L̄aMa − LaM̄a) = eK(τ) with K(τ) being

the τ -dependent part of the Kähler potential (3.11), i.e. K(τ) = − ln[−i(τ − τ̄)]. Hence,

making use of

Kτ = − 1

τ − τ̄
, (4.8)

we find that (4.7) gives DτZ = 0, which is exactly what we wanted to show.

Note that relation (4.8) is essential in the proof that the new attractor equations give

solutions to the susy condition DτZ = 0. In other words, the special geometry inherited

by the N = 1 theory is not enough by itself, contrary to previous expectations in the

literature. This observation is of crucial importance regarding proposed generalizations

of the flux vacua attractors of [7] to heterotic non-Kähler compactifications [20]. We will

elaborate further on this in section 5.

4.2 DADBZ 6= 0 case

Now let us turn to the generalized equations (3.18). It is not clear to us how to extend

the argument presented in (4.1)–(4.3) to the case DADBZ 6= 0. So, instead of trying to

obtain (3.18) from DZ = 0, we will simply verify that, when equations (3.18) hold, the susy

minimum conditions DiZ = 0 and DτZ = 0 are automatically satisfied. In that regard, it

is instructive to see first how that works for the original equations (2.13).

For easier comparison with [2], let us consider DīZ̄ instead of DiZ. Substituting the

charges from (2.13), we find:

DīZ̄ = qΛDīL̄
Λ − pΛNΛΣDīL̄

Σ = −iZ(M̄Λ − L̄ΣNΣΛ)DīL̄
Λ . (4.9)

Since NΛΣ is complex, in other words NΛΣL̄
Σ 6= M̄Λ, the above expression does not vanish

in an obvious way. Nevertheless, one can show that it is in fact zero by using a couple of

properties of special geometry. For that purpose, let us rewrite (4.9) as:

DīZ̄ = −i Z L̄Λ(N̄ΛΣ −NΛΣ)DīL̄
Σ . (4.10)

Now, from (2.7) and its complex conjugate, we have:

N̄ΛΣ −NΛΣ = GΛΣ − ḠΛΣ − 2i
(ImGΛΓ)(ImGΣΠ)

(ImGΞΩ)

(

L̄ΓL̄Π

L̄ΞL̄Ω
+
LΓLΠ

LΞLΩ

)

. (4.11)

Substituting this in (4.10) and using that (ImGΣΠ)LΠDīL̄
Σ = 0, see (2.8), we find that

the (LΓLΠ)/(LΞLΩ) term drops out and the remaining terms give:

DīZ̄=−iZ DīL̄
Σ × (4.12)

× 2i

(ImGΞΩ)L̄ΞL̄Ω

(

(ImGΛΣ)L̄Λ(ImGΞΩ)L̄ΞL̄Ω−(ImGΛΓ)L̄ΛL̄Γ(ImGΣΠ)L̄Π
)

≡ 0 .

Note that, whereas the presence of DīL̄
Σ in (4.10) was essential for the vanishing of the

(LΓLΠ)/(LΞLΩ) term, the cancellation in (4.12) works because of the L̄Λ multiplier. For

future use, let us extract explicitly the special geometry property that follows from the

considerations (4.9)–(4.12):

MΛDiL
Λ − LΛDiMΛ = LΛ(NΛΣ − N̄ΛΣ)DiL

Σ = 0 . (4.13)
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Now let us go back to the generalized attractor equations for flux vacua (3.18). We will

show that they imply DiZ = 0 in a manner similar to the one in the previous paragraph.

From (4.4), we have:

DiZ = qfaDiL
a − iqhaDiL̃

a − pa
fDiMa + ipa

hDiM̃a . (4.14)

Substituting the charges with their corresponding expressions in (3.18), we find:

DiZ = (τZ̄Ma + τ̄ZM̄a)DiL
a − (τZ̄La + τ̄ZL̄a)DiMa (4.15)

−i(Z̄Ma + ZM̄a)DiL̃
a + i(Z̄La + ZL̄a)DiM̃a

+(τ̄ Z̄0IDIMa + τZ0ID̄IM̄a)DiL
a − (τ̄ Z̄0IDIL

a + τZ0ID̄I L̄
a)DiMa

−i(Z̄0IDIMa + Z0ID̄IM̄a)DiL̃
a + i(Z̄0IDIL

a + Z0ID̄I L̄
a)DiM̃a ,

where we have rearranged the various terms in a convenient way. One can immediately

notice that the first line vanishes for exactly the same reasons as in the BH case. Namely,

due to DiMa = N̄abDiL
b and Ma = NabL

b, the Z terms cancel out right away,7 whereas

the proof that the Z̄ terms vanish follows exactly the arguments leading to (4.13). Now

let us turn to the second line in (4.15). Since DiM̃a = −iτDiMa and DiL̃
a = −iτDiL

a,

it is clear that this line too gives zero in precisely the same way as for the BH case in the

previous paragraph. Of course, it is not surprising that so far nothing new was needed since

the first two lines of (4.15) come from the attractor equations (3.15) for the DADBZ = 0

case, which is related to the BH attractors in a very simple way as we saw in the beginning

of Subsection 4.1. The new ingredients in the present case are the last two lines in (4.15).

So one might expect that some additional special geometry properties may be needed in

order to verify their vanishing. Indeed, if one wants to follow the same logic as for the first

two lines, namely to cancel the terms on the third line among themselves (and the same

for the terms on the fourth line), one runs into a problem. More precisely, whereas the Z̄0I

terms cancel out right away,8 the Z0I terms give:

τZ0j̄ Dj̄L̄
b(Nab − N̄ab)DiL

a = −iτZ0j̄gij̄ 6= 0 , (4.16)

where we have used equation (3.10) in [22]. This result may look worrisome. However,

interestingly enough things work out in a much simpler way. Namely, the Z0I terms on the

third line cancel in a straightforward manner with the Z0I terms on the fourth line due to

DiL̃
a = −iτDiL

a and DiM̃a = −iτDiMa. Finally, the Z̄0I terms on the fourth line cancel

each other similarly to the Z̄0I terms in the third line. So we have shown that when the

new attractor equations (3.18) are satisfied, then one also has that DiZ = 0.

To complete the proof that (3.18) give solutions to the supersymmetry conditions, we

also need to verify that they imply DτZ = 0. For that purpose, we again consider (4.5):

DτZ = qfaDτL
a − iqhaDτ L̃

a − pa
fDτMa + ipa

hDτM̃a . (4.17)

7In (4.10) the Z̄ terms were canceling for that reason; the difference is obviously due to the fact that

there we were considering DīZ̄ instead of DiZ.
8This time one only needs to use DiMa = N̄abDiL

b in both terms (together with N̄ab = N̄ba).
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As before, we will substitute here the charges with their corresponding expressions

from (3.18). Recall that we have already shown the vanishing of all terms that do not

contain Z0I or Z̄0I (see equations (4.7)–(4.8) and the discussion around them). So we are

left with:

DτZ = (τ̄ Z̄0IDIMa + τZ0ID̄IM̄a)KτL
a − (Z̄0IDIMa + Z0ID̄IM̄a)(1 + τKτ )L

a

−(τ̄ Z̄0IDIL
a + τZ0ID̄I L̄

a)KτMa + (Z̄0IDIL
a + Z0ID̄I L̄

a)(1 + τKτ )Ma

= Z0ID̄I(L̄
aMa − LaM̄a) + Z̄0I(MaDIL

a − LaDIMa)(1 + (τ − τ̄)Kτ ) . (4.18)

Clearly the Z0I term vanishes due to Di(L̄
aMa−LaM̄a) = 0 , whereas the Z̄0I term is zero

because of either (4.8) or (4.13). Thus, we conclude that indeed equations (3.18) lead to

DτZ = 0. Note that, unlike (4.7), the vanishing of (4.18) follows entirely from the special

Kähler geometry of the complex structure moduli, regardless of the form of the Kähler

potential for τ .

In this section we showed that the new attractor equations (3.18) automatically give

solutions to the susy conditions. In principle, one also needs to verify that they are com-

patible with (4.4), i.e. that the right-hand side of (4.4), with charges substituted from their

attractor expressions, gives exactly Z. This is not expected to be an issue for the concrete

case of (3.18) though, since
∫

X4
F4∧ Ω̂4 = Z

∫

X4

¯̂
Ω4∧ Ω̂4 = Z with X4 = (CY (3)×T 2)/Z2 ,

as noted in [7]. Nevertheless, for completeness we explain in appendix A why in general

DZ = 0 can have spurious solutions and go on to show explicitly that the new attrac-

tors (3.18) do indeed satisfy (4.4).

5. Generalizations

It is natural to ask whether the flux vacua attractors of [7] are a peculiarity of type IIB

CY orientifolds with flux or whether they are a special case of a more general picture. This

question is of significant importance, since if the attractor mechanism could be extended

to generic N = 1 flux vacua, that would provide a new perspective on moduli stabilization.

With this motivation in mind, let us now explore the various possibilities for generalizing

Kallosh’s new attractor equations.

5.1 Heterotic on non-Kähler manifolds

A first possibility for generalization, addressed in [20], is to consider the heterotic string on

non-Kähler manifolds. Before scrutinizing the details of this proposal, let us first review

some basic properties of SU(3) structure manifolds and recall the arguments of [20] in

favour of this avenue for generalization of the flux vacua attractors.

5.1.1 SU(3) structure compactifications

Generically, heterotic string compactifications with background fluxes require the internal

manifold to have SU(3) structure, instead of SU(3) holonomy. Such manifolds are still

characterized by the existence of an almost complex structure J and a holomorphic three-

form Ω. However, unlike for a CY, J and Ω are not closed with respect to the Levi-Civita
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connection. Their non-closedness is encoded in five torsion classes; for more details see [26].

What is important for us is that the complex and Kähler structure moduli spaces are special

Kähler manifolds with Kähler potentials [13]:

KJ = − ln i

∫

〈e−Jc , e−J̄c〉 = − ln
4

3

∫

J ∧ J ∧ J ,

KΩ = − ln i

∫

〈Ω, Ω̄〉 = − ln i

∫

Ω ∧ Ω̄ , (5.1)

where Jc = B + iJ and the bracket 〈 , 〉 denotes the Mukai pairing, defined by:

〈ϕ,ψ〉 = −ϕ1 ∧ ψ5 + ϕ3 ∧ ψ3 − ϕ5 ∧ ψ1 for odd forms

〈ϕ,ψ〉 = ϕ0 ∧ ψ6 − ϕ2 ∧ ψ4 + ϕ4 ∧ ψ2 − ϕ6 ∧ ψ0 for even forms (5.2)

with ϕp being the p-form component of the mixed-degree form ϕ and similarly for ψ. The

moduli of the compactification arise from the expansion of e−Jc and Ω in terms of a basis

of forms [13]:

e−Jc = X0(t) +Xα(t)ωα −Gα(t) ω̃α −G0(t) ⋆ 1 ,

Ω = XI(z)αI −GI(z)βI , (5.3)

where tα and zi denote the Kähler and complex structure moduli respectively, (αI , βI) are

a basis for the 3-forms and 1, ωα, ω̃
α, ⋆1 are a basis for the 0-, 2-, 4- and 6-forms.9 Denoting

ωA ≡ (1, ωα) and ω̃A ≡ (⋆1, ω̃α), we can write:10

e−Jc = XA(t)ωA −GA(t) ω̃A . (5.4)

The basis forms introduced above satisfy:

∫

〈αI , β
J 〉 = −

∫

〈βJ , αI〉 = δJI ,

∫

〈αI , αJ 〉 = 0 =

∫

〈βI , βJ 〉 ,
∫

〈ωA, ω̃
B〉 = −

∫

〈ω̃B, ωA〉 = δBA ,

∫

〈ωA, ωB〉 = 0 =

∫

〈ω̃A, ω̃B〉 , (5.5)

where the integration is over the internal manifold and the Mukai pairing 〈 , 〉 was defined

in (5.2). Also, the pairing of any even form with any odd form gives zero. For a generic

SU(3) structure manifold, these basis forms are not harmonic. Instead, they satisfy the

following differential conditions [13, 27]:

dωα = mI
ααI − eIαβ

I , dω̃α = 0 , dαI = eIαω̃
α , dβI = mI

αω̃
α , (5.6)

9It is beneficial to consider e−Jc , instead of just Jc, in order to easily view SU(3) structure manifolds as

a special case of the more general SU(3)×SU(3) structure spaces. Recall that the latter are most naturally

described in terms of a pair of pure spinors (Φ+, Φ−), which for SU(3) structure reduces to (e−Jc , Ω). We

will give more details on SU(3) × SU(3) structure spaces in the next subsection.
10The index notation in (5.3) and (5.4) differs from the one in [20]; we have adopted it for future

convenience, i.e. for easier comparison with the literature on SU(3) × SU(3) structure compactifications

that we will be considering in Subsection 5.2.
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where the constant matrices mI
α and eαI are constrained by

mI
αeIβ − eIαm

I
β = 0 (5.7)

in order to ensure the nilpotency of the exterior differential. We should note that the

constraint (5.7) is relevant for the standard embedding. For nonstandard embeddings,

the BI of the NS 3-form flux H is non-trivial and this may result in other restrictions on

the fluxes/charges [27]. As in [20], we will not consider the gauge moduli and will only

concentrate on the geometric ones here.

Now, recall that the superpotential in the heterotic case is [28]:

W =

∫

(H + dJc) ∧ Ω . (5.8)

Comparing (5.3) with

e−Jc = 1 − Jc +
1

2
Jc ∧ Jc −

1

6
Jc ∧ Jc ∧ Jc , (5.9)

we can see that X0 = 1 and Jc = −Xα(t)ωα. Taking, as usual, the special coordinates

to be tα = Xα/X0, we then have Jc = −tαωα. Using this, together with (5.6) and the

decomposition of the NS flux as

H = pIαI − qIβ
I , (5.10)

one finds that the superpotenial (5.8) acquires the following form [20]:

W = (qI − tαeIα)XI(z) − (pI − tαmI
α)GI(z) . (5.11)

This expression resembles a lot the superpotential (3.10) for the case of IIB CY orien-

tifolds, considered in [7]. The similarity with the IIB case is even more apparent by

rewriting (5.11) as:

W =

∫

(H − tαFα) ∧ Ω , (5.12)

where Fα ≡ dωα. Specializing to the case of a single Kähler modulus t, one

has Whet =
∫

(H − tF ) ∧ Ω, which looks exactly like the type IIB superpotential

WIIB =
∫

(F − τH) ∧ Ω. This, together with the fact that the complex structure moduli

space in both cases has special Kähler geometry, inspired the author of [20] to make a

particular conjecture for heterotic attractors. Before considering an arbitrary number of

Kähler moduli, let us first examine more carefully this single-modulus conjecture.

5.1.2 Single Kähler modulus

The conjecture of [20] is that for the case of a single Kähler modulus there are super-

symmetric heterotic attractor equations of exactly the same form as (3.18). The obvious

substitutions, that one has to make in the latter equations in order to obtain the heterotic

ones, are: τ → t and (pa
h, qha, p

a
f , qfa) → (mI , eI , pI , qI). For completeness, let us write
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down the proposed attractor equations in the more concise manner used in [20]. Introduc-

ing the following notation: LI
0 = e(KJ+KΩ)/2XI and M0

I = e(KJ+KΩ)/2GI , together with

V = (LI
0 ,M

0
I ), QF = (mI , eI) and QH = (pI , qI), they acquire the form:11

(

QF

QH

)

=

(

2Re(Z̄V)

2Re(tZ̄V)

)

+

(

2Re(gij̄ ettDtDiZ D̄j̄ V̄)

2Re(t gij̄ ettDtDiZ D̄j̄ V̄)

)

. (5.13)

To verify this conjecture, one has to check that the proposed attractor equations (5.13)

imply the supersymmetry conditions DziZ = 0 and DtZ = 0. This computation follows

closely our considerations in section 4 regarding the attractors of [7]. From those consider-

ations, it is immediately clear that the form of the first derivative of the Kähler potential

with respect to t is of crucial importance. More precisely, while the vanishing of DiZ is

due to the special Kähler geometry of the complex structure moduli exactly as in section

4, the DtZ derivative vanishes only if

1 − t̄Kt + tKt = 0 , (5.14)

as in (4.7). Now, it is easy to convince oneself that (5.14) is, in fact, not satisfied, the

reason being that the expression for Kt is not exactly the same as that for Kτ . To be more

explicit, let us write out the relevant Kähler potential. For a single Kähler modulus we

have: Jc = B + iJ = − t ω with ω a 2-form. Then (5.1) implies:

KJ = − ln i

∫

〈e−Jc , e−J̄c〉 = − ln

[

i

6
(t̄− t)3

]

, (5.15)

where we have used that

e−Jc = etω = 1 + t ω +
t2

2
ω ∧ ω +

t3

6
ω ∧ ω ∧ ω (5.16)

and also the definition of the Mukai pairing in (5.2).12 Alternatively, one can compute KJ

by substituting J = i
2(t − t̄)ω into KJ = − ln 4

3

∫

J ∧ J ∧ J , finding again (5.15). So we

see that

∂tKJ = − 3

t− t̄
(5.17)

and hence

1 + (t− t̄) ∂tKJ = −2 , (5.18)

which implies that DtZ 6= 0 as explained above.

It might seem that one could compensate the problematic factor of 3 in (5.17) by

introducing suitable numerical coefficients in front of the different rows on the right-hand

11In [20], the proposed conjecture differs from (5.13) by having (Kt)
−1 instead of the vielbein et

t. For the

original new attractors of [7], one has (Kτ )−1 = eτ
τ due to the specific form of the Kähler potential for τ

in that case. In general, however, (Kt)
−1 6= et

t. In any case, our subsequent arguments are independent of

which one of those two options is taken in (5.13).
12We have also assumed the normalization

R

ω ∧ ω ∧ ω = 1. Clearly, any other normalization only gives

a constant numerical factor in front of the bracket inside the logarithm in (5.15) and therefore is irrelevant

for the computation of any derivatives of KJ .
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side of (5.13). Unfortunately, however, this is not possible. The reason is that the 1 and

the t term in the expression 1 + (t− t̄) ∂tKJ have the same origin, whereas the t̄ term has

different origin. In other words, if one multiplies the rhs of the QF rows in (5.13) with a

numerical constant r and the rhs of the QH rows with another constant s, then one finds

that 1 + (t − t̄) ∂tKJ → r + (rt− st̄) ∂tKJ . Clearly, no choice of r and s can make the

last expression vanish for arbitrary t.

An additional problem with the proposal (5.13) is that it is not properly normalized.

Indeed, the analogue of the computation in (A.6) does not give Z. Instead, one finds that:

(qI−t eI)LI
0 −(pI−tmI)M0

I = (6Z)/(t− t̄)2. However, recall that at the classical level the

heterotic string has only Minkowski susy vacua, unlike type IIB.13 And when Z = 0 the

above two problems of (5.13), namely with the normalization and with DtZ 6= 0, actually

disappear. So one might be inclined to conclude that the proposal (5.13) works since,

although it describes only Minkowski attractors, in the heterotic case this is all that is

necessary. We would like to caution, though, that the attractor equations are supposed

to originate from an expansion that is valid everywhere in moduli space, not just at the

supersymmetric extrema. Hence, the relevant expressions have to be normalized correctly

for any Z 6= 0, even when they only give vacua for Z = 0. As a last remark, let us also

mention that (5.13) is not of the form that generalizes properly to arbitrary number of

Kähler moduli, as we will see in the following.

In this subsubsection we showed that the single-Kähler-modulus conjecture (5.13) fails.

This does not mean that there are no heterotic attractors, just that one should not treat

the Kähler modulus similarly to the axion-dilaton in (3.18). Instead, for the successful

formulation of heterotic attractor equations it is essential that the Kähler and complex

structure moduli be treated on equal footing. In order to understand how to do that, it is

instructive to consider in more detail the case of several Kähler moduli. This will also lead

us to a technical motivation to look at type II SU(3) × SU(3) structure compactifications

in the search for generalizations of the flux vacua attractors. (The physical motivation, of

course, is that they are the most general extension of the situation considered in [7], in the

realm of geometric compactifications.)

5.1.3 Heterotic attractors

Let us now turn to the general case of arbitrary number of Kähler moduli. It is convenient

to introduce the notation: mI
0 = −pI and eI0 = −qI. Then, in terms of mI

A = (mI
0 ,m

I
α)

and eIA = (eI0, eIα), one can write (5.11) as:

W = mI
AGI(z)XA(t) − eIAX

I(z)XA(t) , (5.19)

where we have used that X0(t) = 1 and Xα = tα. Clearly, it is most natural to define

the covariantly holomorphic sections (LI ,MI) and (LA,MA) in the usual way, unlike the

sections in (3.18) and (5.13), so that the special Kähler geometries of the complex and

Kähler structure moduli factorize. I.e, we define:

LI = eKΩ/2XI , MI = eKΩ/2GI ; LA = eKJ/2XA , MA = eKJ/2GA . (5.20)

13See [24] for more details on heterotic AdS vacua in the presence of a gaugino condensate.
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In terms of these sections, the central charge becomes:

Z = e(KΩ+KJ)/2W = mI
AMIL

A − eIAL
ILA . (5.21)

This nice expression suggests that it may be useful to introduce the double-symplectic

section [20]:

V̂ = e(KΩ+KJ)/2(Ω ⊗ e−Jc) , (5.22)

or in more detail:

V̂ = (LIαI −MIβ
I) ⊗ (LAωA −MAω̃A)

= LILA αI ⊗ ωA −MIL
A βI ⊗ ωA − LIMA αI ⊗ ω̃A +MIMA β

I ⊗ ω̃A . (5.23)

Then, using (5.5), one can verify that the central charge (5.21) can be written as:

Z = −
∫

〈Q̂, V̂〉 , (5.24)

where Q̂ ≡ −FA ⊗ ω̃A with FA = mI
AαI − eIAβI ; the minus in the definition of Q̂ ensures

that this generalized ”flux” is in the same basis as (5.23).

Now, it is tempting to propose, similarly to [20], that there are supersymmetric at-

tractor equations for heterotic flux vacua of the form:

Q̂ = 2Re(Z̄V̂ + gij̄gαβ̄DiDαV̂ D̄j̄D̄β̄Z̄) . (5.25)

Notice that, unlike in [20], this proposal has to contain Re and not Im in order to be

consistent with (5.24), since the normalization of the doubled section is:

∫

〈 ¯̂V, V̂〉 = (L̄IMI − LIM̄I)(L̄AMA − LAM̄A) = (−i)2 = −1 . (5.26)

Although at first sight (5.25) might look like a natural generalization of (5.13), it is in fact

somewhat different. Indeed, more explicitly it states that:

mI
A = Z̄LIMA + ZL̄IM̄A + Z̄iαDiL

I DαMA + Z īᾱDīL̄
I DᾱM̄A ,

eIA = Z̄MIMA + ZM̄IM̄A + Z̄iαDiMI DαMA + Z īᾱDīM̄I DᾱM̄A , (5.27)

where Z īᾱ ≡ DīDᾱZ = gījgᾱβDjDβZ. These expressions for mI
A and eIA do not reduce

to (5.13) when there is only one Kähler modulus because (eKJ/2, eKJ/2 tα) is LA, not

MA, and also because of the minus signs in mI
0 = −pI and eI0 = −qI . This is a good

sign, given that the conjecture (5.13) does not work as we saw above. So it is worth

exploring the proposal (5.27) in more detail. Before turning to that however, let us make

an important remark.

By comparing (5.23) with Q̂ = −mI
AαI ⊗ ω̃A + eIAβI ⊗ ω̃A, it is easy to realize that

in the case of the heterotic string some of the possible charges are identically zero. The

general case corresponds to a generalized flux of the form:

Q̂ = m̃IA αI ⊗ ωA − ẽAI β
I ⊗ ωA −mI

A αI ⊗ ω̃A + eIA β
I ⊗ ω̃A , (5.28)
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or in other words to the charge matrix

Q =

(

m̃IA mI
A

ẽAI eIA

)

(5.29)

that appears in type II SU(3) × SU(3) structure compactifications [14, 17] (it was also

introduced in [20]).14 In such compactifications all elements of Q can be non-vanishing,

unlike the SU(3) structure case in which m̃IA ≡ 0 ≡ ẽAI .

Let us now go back to the proposal (5.27). Substituting it in DjZ , we find:

DjZ = mI
A(DjMI)LA − eIA(DjL

I)LA

= Z̄ MAL
A LI(N̄IJ −NIJ )DjL

J + Z M̄AL
ADj(L̄

IMI − LIM̄I)

+Z̄iαLA (DαMA) (DiL
IN̄IJDjL

J −DiL
J N̄IJDjL

I)

+Z īᾱ LA (DᾱM̄A)Dī(L̄
IDjMI − M̄IDjL

I) = 0 , (5.30)

where each of the Z, Z̄, Z īᾱ and Z̄iα terms vanishes separately due to the special Kähler

geometry of the complex structure moduli; see (2.2) and (4.13) and also recall that NIJ =

NJI . On the other hand, the derivative with respect to the Kähler moduli gives:

DβZ = (mI
AMI − eIAL

I)DβL
A = ZM̄A(L̄IMI − LIM̄I)DβL

A

+Z̄iα(DαMA)(DβL
A)(MIDiL

I − LIDiMI)

+Z īᾱ(DᾱM̄A)(DβL
A)Dī(L̄

IMI − LIM̄I)

= −iZM̄ADβL
A , (5.31)

where again the Z̄iα and Z īᾱ terms vanish because of special Kähler geometry. Although

the final result in (5.31) is nonzero for a generic Z, recall that classically the heterotic string

only has Minkowski susy vacua. Nevertheless, it is interesting to note that we do not have

to take Z = 0 by hand in order to ensure DβZ = 0; the vanishing of Z follows from the

attractor proposal (5.25) itself, as we will show below. The reason is that (5.25) contains

also the components m̃IA ≡ 0 ≡ ẽAI , which impose certain constraints on the moduli.

Note however, that it is a nontrivial statement that the consequence of those constraints is

the vanishing of the central charge. In principle, it could have been conceivable that those

constraints lead to the vanishing of ZM̄ADβL
A with Z 6= 0.

To illustrate the last point, let us again look at the example of the BH attractors that

were reviewed in Subsection 2.2. The heterotic case is analogous to taking, say, pΛ ≡ 0

in (2.9) and (2.13). In other words, one has the central charge Z = qΛL
Λ and the attractor

equations qΛ = i(Z̄MΛ − ZM̄Λ), together with the constraints

i(Z̄LΛ − ZL̄Λ) = 0 . (5.32)

So one might worry that now DiZ = qΛDiL
Λ is non-vanishing since the term pΛDiMΛ was

essential for the necessary cancellations; see (4.9)–(4.13). However, the constraints (5.32)

imply that:

Z̄XΛ − ZX̄Λ = 0 , (5.33)

14The meaning of the charge matrix Q will become more clear in section 5.2 and, in particular, in

equation (5.50).
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where we have used eK/2 6= 0. Acting with Di on the last equation, we find:

Z̄ DiX
Λ = X̄ΛDiZ . (5.34)

Now, in special coordinates X0 = 1, Xj = tj and so DiX
j = ∂iX

j = δj
i whereas DiX

0 = 0.

Therefore, taking Λ = 0 in the last equation, we conclude that DiZ = 0. Still, one may be

worried that in the present case we could be forced to have Z = 0, since both the qΛ and

pΛ terms are needed in order to verify that the expression qΛL
Λ − pΛMΛ, with attractor

equations substituted, does equal to Z. Indeed, for pΛ = 0 we have

qΛL
Λ = i(Z̄MΛL

Λ − ZM̄ΛL
Λ) , (5.35)

which seems quite different from Z. However, using the constraints (5.32) to express Z̄LΛ

as ZL̄Λ, we find that

qΛL
Λ = iZ(L̄ΛMΛ − LΛM̄Λ) = Z . (5.36)

Hence a set of charges such that qΛ 6= 0 and pΛ = 0 leads to DiZ = 0 with Z 6= 0, just like

in the general case of BH attractors.

Let us now get back to the heterotic constraints m̃IA ≡ 0 , ẽAI ≡ 0 and explore their

consequences for (5.31) and, in particular, for the central charge (5.21). We will see that

things are somewhat different compared to the BH case of the previous paragraph. To

elaborate on that, let us first write down explicitly the constraints that follow from the

m̃IA and ẽAI components of (5.25):

0 = Z̄LILA + ZL̄IL̄A + Z̄iαDiL
I DαL

A + Z īᾱDīL̄
I DᾱL̄

A ,

0 = Z̄MIL
A + ZM̄IL̄

A + Z̄iαDiMI DαL
A + Z īᾱDīM̄I DᾱL̄

A . (5.37)

Now, let us substitute the attractor expressions (5.27) into mI
AMILA − eIALILA in order

to see whether the last expression gives Z once the constraints (5.37) are taken into account,

similarly to the BH attractor case. From (5.27), we have:

mI
AMIL

A − eIAL
ILA = −iZM̄AL

A , (5.38)

where again we have used the special geometry properties that i(L̄IMI − LIM̄I) = 1 and

MI(DiL
I) − LI(DiMI) = 0; see (4.13). Clearly, for Z 6= 0 the right-hand side of (5.38)

could equal Z only if it were true that M̄ALA = i, which is incompatible with the nor-

malization i(L̄AMA −LAM̄A) = 1. However, we will show now that the constraints (5.37)

enforce precisely the vanishing of the central charge. Indeed, let us consider the expression:

Z̄LILAMAMI−Z̄MIL
AMAL

I+Z̄iαDiL
I DαL

AMAMI−Z̄iαDiMI DαL
AMAL

I , (5.39)

which is identically zero since the first two terms obviously cancel each other whereas the

last two cancel due to special geometry. We will use (5.37) to substitute all Z̄, Z̄iα terms

in (5.39) with Z, Z īᾱ terms. To do that, let us multiply the first condition in (5.37) by

MAMI and the second one by MALI . Then we find that (5.39) acquires the form:

0 = iZ L̄AMA , (5.40)
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where the Z īᾱ terms again canceled due to special geometry. Since the normalization of

the (LA,MA) section implies that L̄AMA 6= 0, we conclude that Z = 0 as a result of

the constraints m̃IA ≡ 0 ≡ ẽAI . Clearly then, DβZ also vanishes as a consequence of the

heterotic constraints. To recapitulate, we have established that (5.25) gives heterotic susy

attractors for Minkowski vacua.

Before concluding this subsection, let us make a final remark. From the form of the

result in (5.31), it is evident that DβZ could be made to vanish, without restricting the

value of Z, if there were an additional iZ L̄ADβMA term, so that the combined result

would be i Z Dβ(L̄AMA − LAM̄A) . It is easy to realize that this would be the case for a

theory with central charge of the form (up to a constant):

Z =

∫

〈Q̂, V̂〉 = eIAL
ILA −mI

AMIL
A − ẽAI L

IMA + m̃IAMIMA . (5.41)

Indeed, in such a case one can easily verify that the attractor equations (5.27) together

with the remaining content of (5.25), i.e.

m̃IA = Z̄LILA + ZL̄IL̄A + Z̄iαDiL
I DαL

A + Z īᾱDīL̄
I DᾱL̄

A

ẽAI = Z̄MIL
A + ZM̄IL̄

A + Z̄iαDiMI DαL
A + Z īᾱDīM̄I DᾱL̄

A , (5.42)

imply both DiZ = 0 and DαZ = 0 due to the special Kähler geometry of the complex

and Kähler moduli spaces respectively. This gives us a strong motivation to investigate

whether in (at least some cases of) SU(3) × SU(3) structure compactifications of type II

strings the central charge Z = eK/2W for N = 1 truncations can have the form (5.41).

5.2 Type II on SU(3) × SU(3) structure spaces

Now we turn to type IIA/B string theory compactified on SU(3)× SU(3) structure spaces.

Besides the technical motivation that we reached in the previous subsection, these com-

pactifications are physically the most appropriate arena to explore the possibility for the

existence of flux vacua attractors. The reason is that they give the most general type II

flux compactifications with N = 1 vacua [15]. In addition, it is natural to expect that such

a generalization may be possible, since the deformation spaces of those manifolds have

special Kähler structure [16, 13, 14, 17].

5.2.1 SU(3) × SU(3) structure compactifications

Let us start by recalling some background material about SU(3) × SU(3) structure com-

pactifications. For a more thorough review, see for example [17]; also, see [18] for a detailed

investigation showing that the susy conditions of the 4d effective action, in the presence

of warp factors, indeed give solutions of the supersymmetry conditions of the full ten-

dimensional theory.15

15It is interesting to note that, in addition, [18] studies the ten-dimensional interpretation of 4d non-

perturbative effects, showing that the latter induce deformations of the generalized complex structure of

the internal manifold. This new perspective also leads to an independent geometric derivation [18] of the

superpotential for a mobile D3-brane, that was found earlier in [19].
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Manifolds with SU(3)×SU(3) structure are most naturally described in terms of gener-

alized complex geometry [16, 29, 30]. The latter is a mathematical framework that provides

a unifying description of various structures, existing on the tangent bundle of a manifold, by

going to the sum of the tangent T and cotangent T ∗ bundles. For six-dimensional internal

manifolds the natural structure group on T ⊕ T ∗ is SO(6, 6). Requiring that the manifold

admit two globally defined spinors η1, η2 reduces the latter to SU(3) × SU(3) structure.

This structure on T ⊕ T ∗ gives rise to several different structures on T . In particular, if η1

and η2 are proportional everywhere, then one obtains the more familiar SU(3) structure. If

η1 and η2 are never proportional, then one has an SU(2) structure that is the intersection

of the two SU(3) structures defined by the two spinors. Clearly though, in general η1 and

η2 need not be proportional (or orthogonal) everywhere; the angle between them can vary

throughout the manifold. So the language of SU(3)×SU(3) structures is the most suitable

one in order to encompass all possibilities.

An SU(3)×SU(3) structure is characterized by a pair of pure SO(6, 6) spinors Φ+ and

Φ−, which can be viewed as elements of Λ•T ∗ or, more precisely, as sums of even and odd

forms respectively. They encode the geometric and B-field degrees of freedom of the internal

manifold. Recall that, in the SU(3) structure case, these are: Φ+ = e−(B+iJ) and Φ− = Ω ,

where J and Ω are the defining 2- and 3-form. In general, however, Φ− can contain 1-, 3-

and 5-forms just like Φ+ contains 0-, 2-, 4- and 6-forms. In order to obtain an effective

four-dimensional theory,16 one needs to expand the higher-dimensional fields (including

Φ±) in terms of a finite basis of forms on the internal manifold and to keep only the light

modes. However, for SU(3) × SU(3) structure manifolds (in fact, even for SU(3) structure

ones) the distinction between heavy and light modes is not straightforward, as the explicit

construction of the appropriate basis of forms is not known in principle.17 Nevertheless, one

can proceed by assuming the existence of a finite basis satisfying certain constraints, such

that the resulting effective 4d theory is a consistent (gauged) N = 2 supergravity [13, 14].

This approach has been quite fruitful so far and we adopt it in the following. Let us denote

the set of odd basis forms as {αI , βI} and the set of even basis forms as {ωA, ω̃A}. As

before, they are required to satisfy (5.5); however, now the set {αI , βI} contains 1-, 3- and

5-forms, unlike in Subsection 5.1 where it only contained 3-forms.

Having introduced a finite basis of forms, we can decompose the pure spinors Φ+ and

Φ− as:

Φ− = XI(z)αI −GI(z)βI , Φ+ = XA(t)ωA −GA(t) ω̃A . (5.43)

As in the previous subsection, we have denoted by zi the coordinates of the moduli

space M− of deformations of Φ− (for CY: the complex structure moduli) and by tα the

coordinates on the moduli space M+ of Φ+ deformations (for CY: the Kähler structure

moduli). Clearly, the periods of Φ± are defined by:

XI =

∫

〈Φ−, β
I〉 , GI =

∫

〈Φ−, αI〉 (5.44)

16At this point, that would be an N = 2 theory since there are two internal spinors. We will discuss the

N = 1 vacua in the next subsubsection.
17See [31] and [32], though, for explicit examples in the cases of type IIA on nearly Kähler manifolds and

on nilmanifolds and cosets, respectively.
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and

XA =

∫

〈Φ+, ω̃
A〉 , GA =

∫

〈Φ+, ωA〉 , (5.45)

where 〈 , 〉 is the Mukai pairing (5.2). The moduli spaces M− and M+ have special Kähler

metrics with Kähler potentials [14]:

K−(z) = − ln i

∫

〈Φ−, Φ̄−〉 = − ln i(X̄IGI −XIḠI) (5.46)

and

K+(t) = − ln i

∫

〈Φ+, Φ̄+〉 = − ln i(X̄AGA −XAḠA) , (5.47)

respectively. As before, one can define covariantly holomorphic symplectic sections:

LI(z) = e
K−

2 XI , MI(z) = e
K−

2 GI ,

LA(t) = e
K+
2 XA, MA(t) = e

K+
2 GA , (5.48)

so that

i(L̄IMI − LIM̄I) = 1 and i(L̄AMA − LAM̄A) = 1 . (5.49)

Similarly to (5.6), the basis forms for SU(3)× SU(3) structure spaces are not closed in

general. However, now the differential conditions they satisfy are [14]:18

DωA ∼ mI
A αI − eIA β

I

Dω̃A ∼ m̃IA αI − ẽAI β
I

DαI ∼ −ẽAI ωA + eIA ω̃
A

DβI ∼ −m̃IA ωA +mI
A ω̃

A . (5.50)

Here the symbol ∼ means equality only up to terms that vanish under the symplectic

pairing (5.5). The generalized ’derivative’ operator D is defined by [33, 17]:

D = d−H ∧ −Q · −Rx , (5.51)

where H is the NS 3-form flux and the operators Q and R act on a p-form C as

(Q · C)m1...mp−1 = Qn1n2
[m1

C|n1n2|m2...mp−1] ,

(RxC)m1...mp−3 = Rn1n2n3Cn1n2n3m1...mp−3 . (5.52)

Hence D still maps even forms into odd forms and vice versa. The Q and R components

in (5.51) appear when one considers non-geometric backgrounds. Finally, the constant

charge matrices eIA, mI
A, ẽAI and m̃IA in (5.50) have to satisfy the constraints:

m̃IAmJ
A −mI

Am̃
JA = 0 , ẽAI eJA − eIAẽ

A
J = 0 , ẽAIm

J
A − eIAm̃

JA = 0

m̃IAẽBI − ẽAI m̃
IB = 0 , mI

AeIB − eIAm
I
B = 0 , mI

Aẽ
B
I − eIAm̃

IB = 0 , (5.53)

18For later convenience, we adopt different sign conventions for ẽAI and m̃IA compared to [14].
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in order for the nilpotency condition D2 = 0 to hold. Let us also note that [14] argued

that, in order to turn on all charges in the total charge matrix (5.29), one has to consider

non-geometric compactifications [34, 33]. The latter differ from the geometric ones in

that their transition functions contain string dualities, like T-duality. Nevertheless, the

naive supergravity treatment still gives the correct low-energy effective theory [14]; see

also [35]. For more details on the relation between SU(3)× SU(3) structure geometric and

non-geometric compactifications, see [36].19

As already mentioned above, generically type II on SU(3) × SU(3) structure spaces

leads to an N = 2 effective theory as there are two internal spinors. In the following, we

will be interested in truncations that preserve only N = 1 susy in four dimensions.

5.2.2 N = 1 truncation

An obvious way of obtaining an N = 1 truncation is to consider type II orientifold com-

pactifications on SU(3) × SU(3) structure spaces. The resulting 4d effective theory was

studied in [38]. However, the N = 2 → N = 1 truncation does not have to come from

orientifolding, as pointed out in [17]. It could be the result of a spontaneous partial su-

persymmetry breaking. I.e., in such cases the N = 1 theories provide low-energy effective

descriptions around N = 1 vacua that break N = 2 spontaneously. Since the concrete

mechanism, leading to the N = 1 truncation, is irrelevant for our purposes, we will not

dwell on that any further.

Let the N = 1 susy parameter ε be given by the linear combination ε = aε1 + b̄ε2
of the two N = 2 parameters ε1 and ε2, where a and b are complex constants such that

|a|2 + |b|2 = 1. Also, let us first concentrate on type IIA. Then [17] finds that:

eK/2W =
i

4āb
e

K+
2

+2ϕ

∫

〈Φ+,DΠ− +
1√
2
Gfl〉 , (5.54)

where

Π− =
1√
2
Aodd + iIm(CΦ−) with C =

√
2abe−φ . (5.55)

Here φ is the ten-dimensional dilaton, ϕ is the 4d one given by e−2ϕ =
∫

e−2φvol6 and,

finally, the RR potential Aodd and RR flux Gfl are defined by G = Gfl + DAodd, where

G = G0 +G2 +G4 +G6 is the sum of all internal RR field strengths.20 Using that [38, 39]:

K̂− = −2 ln i

∫

〈Π−, Π̄−〉 = 4ϕ , (5.56)

19A beautiful thorough investigation of this issue was performed in [37], which appeared after the first

version of this paper. More precisely, this work showed that those of the charges eIA, ẽAI , mI
A and m̃IA

on the right hand side of (5.50), which are due to non-zero Q and R in (5.51), can always be gauged away

locally. (I.e., locally one can always choose a basis, such that they vanish.) However, in contrast to the

geometric case, for non-geometric backgrounds there are obstructions for such a choice globally. For more

details, see [37].
20Note that G is related to the sum F of the usual modified field strengths, that enter the ten-dimensional

supergravity action, via F = eBG.
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where K̂− is the Kähler potential for the space of complex scalars that arise in the Π−
expansion,21 we recognize the total N = 1 Kähler potential in (5.54) to be K = K+ + K̂−.

For simplicity, let us consider the case of vanishing RR fluxes. Then the N = 1

superpotential is:

W = c

∫

〈Φ+,DΠ−〉 , (5.57)

where we have denoted c = i
4āb . Expanding Π− on the basis of odd forms,

Π− = X̂IαI − ĜIβ
I , (5.58)

and using (5.50), (5.5) and the Φ+ expansion in (5.43), one can write the superpotential

as:

W = c(X̂IeIAX
A − ĜIm

I
AX

A − X̂I ẽAIGA + ĜIm̃
IAGA) . (5.59)

Introducing

L̂I = e
K̂−

2 X̂I and M̂I = e
K̂−

2 ĜI , (5.60)

we find that the central charge acquires the form:

Z = eK/2W = c
[

eIAL̂
ILA −mI

AM̂IL
A − ẽAI L̂

IMA + m̃IAM̂IMA
]

. (5.61)

The last expression looks exactly like (5.41). Unfortunately though, there is a key

difference. Namely, the metric determined by the Kähler potential (5.56) is not special

Kähler. In particular,

K̂− = −2 ln i
(

¯̂
XIĜI − X̂I ¯̂

GI
)

(5.62)

implies that

i
(

¯̂
LIM̂I − L̂I ¯̂

MI
)

= e
K̂−

2 , (5.63)

unlike the normalizations (5.49). In addition, the coordinates X̂I , ĜI are not projective and

are actually independent [38, 39]. In other words, the set of supersymmetry conditions is:

DαZ = 0 , DX̂IZ = 0 , DĜI
Z = 0 . (5.64)

Whereas, according to our previous considerations, the first condition is satisfied by

the conjecture (5.25) with indices i running over {X̂I , ĜI} together with the substitutions

Ω → Π− and e−Jc → Φ+ (plus taking into account the proper normalization for the Π−
sections, as we will see below), the last two conditions in (5.64) are not. Nevertheless,

the form of K̂− is very specific. This, together with the fact that K+ does determine a

special Kähler metric, makes it worth investigating whether there are any conditions under

which DX̂IZ = 0 and DĜI
Z = 0 can still be satisfied as a result of the relevant attractor

equations. We will see now that the answer to this question is positive. More precisely, we

will show that all of the susy conditions in (5.64) are implied by the appropriate attractor

equations when one considers only Minkowski vacua.

21Strictly speaking, (5.56) was rigorously derived only for SU(3) structure compactifications [38]. How-

ever, it is natural to expect that it holds for SU(3)×SU(3) structure compactifications as well, since results

for the SU(3) structure case, when expressed in terms of the pair (Φ+, Φ−) instead of just (J, Ω), usually

extend to the full SU(3) × SU(3) structure case; see [13] and [14], for example.
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5.2.3 Minkowski attractors

Let us introduce the analogue of (5.22) for the present case:

U = e(K̂−+K+)/2(Π− ⊗ Φ+) . (5.65)

Using (5.58), (5.60) and (5.63), one can easily compute that U is normalized as:

∫

〈Ū ,U〉 = (
¯̂
LIM̂I − L̂I ¯̂

MI)(L̄AMA − LAM̄A) = −e
K̂−

2 . (5.66)

It is also easy to see that (5.61) can be written as:

Z = c

∫

〈Q̂,U〉 , (5.67)

where Q̂ is given in (5.28) with the meaning of the indices I being as in the current

Subsection 5.2. Hence the analogue of (5.25) is:

Q̂ = −2

c
e−

K̂−

2 Re(Z̄U + gî¯̂jgαβ̄ DîDαU D̄¯̂j
D̄β̄Z̄) , (5.68)

where î, ĵ run over the set of independent variables {X̂I , ĜI} and, as usual, the right-hand

side of (5.68) is understood to be evaluated at the susy minima.

This proposal implies the susy condition DβZ = 0 similarly to the considerations at

the end of Subsection 5.1. Indeed:

DβZ = c
[

eIAL̂
I DβL

A −mI
AM̂I DβL

A − ẽAI L̂
I DβMA + m̃IAM̂I DβMA

]

= −e−
K̂−

2

[

Z(L̂I ¯̂
MI − ¯̂

LIM̂I)(M̄ADβL
A − L̄ADβMA)

+ Z īᾱ(L̂I Dī
¯̂
MI−M̂I Dī

¯̂
LI)(DβL

ADᾱM̄A−DᾱL̄
ADβMA)

]

= 0, (5.69)

where both terms vanish due to the special geometry properties of (LA,MA) alone. Let

us now concentrate on the remaining two susy conditions:
(

∂X̂I + (∂X̂I K̂−)
)

W = 0 ,

or equivalently DX̂IZ ≡
(

∂X̂I + 1
2(∂X̂I K̂−)

)

Z = 0 , and similarly for ĜI .22 From the

expression for the central charge in (5.61), we find that:

DX̂IZ = c (eIAL
A − ẽAIMA) e

K̂−

2 + (∂X̂I K̂−)Z . (5.70)

Now, (5.62) implies that

∂X̂I K̂− =
2

¯̂
GI

i(
¯̂
XIĜI − X̂I ¯̂

GI)
= 2

¯̂
MI , (5.71)

22Of course, the equivalence between
“

∂X̂I + (∂X̂I K̂−)
”

W = 0 and
“

∂X̂I + 1
2
(∂X̂I K̂−)

”

Z = 0 is valid

for e(K++K̂−)/2 nonvanishing or, in other words, for a total Kähler potential K = K+ + K̂− that does not

go to −∞ anywhere on moduli space.
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whereas the expressions for eIA and ẽAI in (5.68) lead to:

eIAL
A − ẽAIMA = − i

c
e−

K̂−

2 Z
¯̂
MI . (5.72)

Note that in the last result all DDZ terms canceled due to the special Kähler geometry

of the Φ+ moduli space, more precisely due to LADαMA − MADαL
A = 0 (see (4.13))

together with the second condition in (5.49). Finally, substituting (5.71) and (5.72)

in (5.70), we obtain:

DX̂IZ = (2 − i)Z
¯̂
MI . (5.73)

Similarly, one also finds that:

DĜI
Z = c (−mI

AL
A + m̃IAMA) e

K̂−

2 + (∂ĜI
K̂−)Z = (i− 2)Z

¯̂
LI . (5.74)

Clearly then, in general both the X̂I and the ĜI supersymmetry conditions are not

satisfied. However, for Minkowski vacua Z = 0 and so in such a case one has DX̂IZ = 0

and DĜI
Z = 0.

For type IIB on SU(3)×SU(3) structure spaces the situation is the same as above but

with the exchange of indices I ↔ A , since the IIB case is obtained from the IIA one by

the substitutions Φ+ → Φ− , Π− → Π+ = 1√
2
Aev + i Im(CΦ+) and G0 +G2 +G4 +G6 →

G1 +G3 +G5 in (5.54) [13, 14, 38]. More precisely, the IIB attractors for supersymmetric

Minkowski vacua (with vanishing RR fluxes) are:

Q̂ = −2

c
e−

K̂+
2 Re(gij̄gα̂

¯̂
β DiDα̂Ũ D̄j̄D̄ ¯̂

β
Z̄) , (5.75)

where

Ũ = e(K−+K̂+)/2(Φ− ⊗ Π+) (5.76)

with

K̂+ = −2 ln i

∫

〈Π+ , Π̄+〉 = −2 ln i
(

¯̂
XAĜA − X̂A ¯̂

GA
)

(5.77)

and indices α̂, β̂ running over the independent variables X̂A and ĜA.

In conclusion, we have found that there are attractor equations for N = 1 Minkowski

vacua of type II compactified on SU(3) × SU(3) structure spaces.

6. Conclusions and discussion

We explored in detail the possibility for the existence of attractor equations in flux com-

pactifications with N = 1 vacua. We filled a gap in the existing literature by verifying

analytically that the flux vacua attractors of [7], for the case of type IIB on CY(3) ori-

entifolds, automatically lead to solutions of all relevant supersymmetry conditions.23 Al-

though this is just a consistency check regarding the derivation of [7], it is necessary in order

to understand how to generalize the flux vacua attractors beyond CY compactifications.

23Of course, we mean the conditions that determine supersymmetric minima only with respect to the

complex structure moduli and axion-dilaton, since the flux superpotential in this case does not depend on

the Kähler moduli.
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We investigated possible generalizations for the heterotic string on SU(3) structure and

for type IIA/B on SU(3) × SU(3) structure and in both cases found flux vacua attractors

for N = 1 Minkowski vacua only.24 Along the way, we also showed that a previous

attractor proposal, for the case of heterotic non-Kähler compactifications with one Kähler

modulus, actually fails, whereas another proposal has to be slightly modified in order to give

heterotic attractors for arbitrary number of Kähler moduli. Our method, however, does not

address the question whether all supersymmetric Minkowski vacua can be obtained from

our attractor equations. Clearly, answering this question is an important component of the

reformulation of the minimization of the relevant scalar potential into the problem of solving

an appropriate system of attractor equations. Even more important is to understand

whether there is a more conceptual explanation, as opposed to the technical one provided

in this paper, of why these attractors do not give AdS vacua. This could, perhaps, be related

to the need for a better understanding, in the context of generalized compactifications, of

the cohomology decomposition of the relevant generalized flux, in the vein of [40, 23, 25].

We should also comment on an apparent degeneracy of the Minkowski vacua, that

at first sight might seem to be implied by our attractor equations. Namely, since the

attractors (5.25), (5.68) and (5.75) are only valid for Minkowski vacua (i.e, for Z = 0),

it may seem that one could remove the normalization factor e−
K̂−

2 in (5.68), as this does

not spoil the susy conditions; the same goes for the factor of e−
K̂+
2 in (5.75). However, we

believe that this freedom is spurious, since both the Z and the DDZ terms should have

a common origin in the above mentioned cohomology decomposition at an arbitrary point

in moduli space (not only at the supersymmetric extrema). Hence, the factors, needed for

proper normalization at a generic Z 6= 0 point of moduli space, should also be present at

points, in which Z = 0.

Let us also point out, that the Minkowski attractors for type II on SU(3)×SU(3) stru-

cure are not a conceptually trivial (due to string dualities) consequence of the Minkowski

attractors for the heterotic string on SU(3) structure. Part of the reason is that not

much is known about the existence of a heterotic-type II duality in the presence of fluxes

and/or non-Kähler compactifications. In fact, the only evidence we are aware of is in the

case of heterotic on K3 × T 2 with flux, the dual being type IIA (M-theory) on SU(3)

structure [41]. More importantly, however, even in the well-understood case of CY com-

pactifications without flux, dualities require a particular fibration structure of the internal

manifolds,25 whereas our considerations did not. It is also worth noting that physically

interesting compactfications of heterotic or type II strings may be exactly such that they

do not have a dual, as recently exemplified by the work of [42], in which the F-theory

compactifications of phenomenological interest are precisely those without heterotic duals.

In addition, from our studies it is also clear that there is a difference at the technical level

24Clearly, here the statement that the vacua are Minkowski is a restriction only for type IIA/B since, as

we have already mentioned, the heterotic string does not have susy AdS vacua at the classical level.
25For example, the familiar heterotic - F-theory duality operates only for the heterotic on an elliptically

fibered CY(3) and F-theory on an elliptically fibered CY(4), whose base is a P
1

fibration over the base of

the heterotic side CY(3).
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between the Minkowski attractors for the heterotic and for the type IIA/B strings. Namely,

in the heterotic case the attractor equations (5.25) themselves led to the vanishing of the

central charge, as we saw in Subsection 5.1.3. On the other hand, in the type II case we had

to put Z = 0 by hand in (5.68) in order to satisfy the susy conditions. Clearly, it would be

desirable to understand the reason behind this difference at a more conceptual level. The

key should be the fact that type II, unlike the heterotic string, has classical supersymmetric

AdS flux vacua and those should, probably, be encoded by attractor equations that arise

from a more general cohomological decomposition of the generalized flux than the one we

considered here. In particular, the attractor equations could contain terms proportional to

DîDĵZ, for example, in addition to those in (5.68), and respectively Dα̂Dβ̂Z for the case

of (5.75), since the relevant Kähler potentials, K̂±, are not special Kähler. We hope to

come back to this in the near future.

Other open issues include the following. An immediate open problem is to investigate

whether one can extend the attractors, that we found for type II on SU(3)×SU(3) structure,

to the case of non-vanishing RR fluxes. In particular, it would be very interesting to see

whether turning on RR fluxes can lead to supersymmetric AdS attractor equations. It

would also be of great interest to address the possibility for existence of nonsupersymmetric

attractors, both for the heterotic on SU(3) structure and for type II on SU(3) × SU(3)

structure, as that would provide another tool for studying de Sitter vacua. It is also worth

pointing out that there might be flux vacua attractors in a broader context than the kind

of compactifications that we have studied here. The inspiration for this suggestion comes

from recent studies of BH attractors in six and seven dimensions [43]. It is interesting

to explore whether the latter have analogy in the realm of flux vacua attractors. Finally,

it is, of course, of great importance to investigate how much one can learn about moduli

stabilization from the already found Minkowski flux vacua attractors. This is especially

interesting, given the difficulty in finding type II Minkowski vacua with stabilized moduli;

for recent progress in that direction using different methods, see [44, 35].
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A. Relation between susy conditions and attractors: a technical issue

To understand why not every solution of DZ = 0 is compatible with (4.4), let us first look

at the simpler case of the BH attractors (2.13).
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As we saw in Subsection 4.2, substituting

pΛ = i(Z̄LΛ − ZL̄Λ) and qΛ = i(Z̄MΛ − ZM̄Λ) (A.1)

into

DiZ = qΛDiL
Λ − pΛDiMΛ , (A.2)

one finds that DiZ = 0 due to special Kähler geometry. However, one can easily check

that the following expressions for the charges:

pΛ = Z̄LΛ + ZL̄Λ and qΛ = Z̄MΛ + ZM̄Λ (A.3)

also imply DiZ = 0. Indeed, substituting (A.3) in (A.2), we find:

DiZ = Z̄(MΛDiL
Λ − LΛDiMΛ) = Z̄LΛ(NΛΣ − N̄ΛΣ)DiL

Σ = 0 , (A.4)

where we have used (2.6) and (4.13). Despite this, (A.3) are not alternative attractor

equations as they are not compatible with

Z = qΛL
Λ − pΛMΛ . (A.5)

Namely, substituting (A.3) into the right-hand side of (A.5) and using (2.2), one obtains

iZ instead of Z.26

Clearly, the reason there can be spurious solutions of the susy conditions is that both

qΛDiL
Λ−pΛDiMΛ = 0 and Z = qΛL

Λ−pΛMΛ are linear algebraic equations in the charges

and in that sense can be viewed as independent conditions. The lesson from this discussion

is that, in principle, one has to verify not only that the new attractor equations (3.18)

imply automatically DZ = 0 but also that they are compatible with the expression for Z

in (4.4). As we already mentioned in the main text, this is not at all unexpected. Despite

that, it is worth providing the explicit check here; this exercise will be rather useful for the

considerations of Subsection 5.1.2.

Consider the right-hand side of (4.4) with (3.18) substituted:

(qfa − τqha)L
a

−(pa
f−τpa

h)Ma = (τZ̄Ma + τ̄ZM̄a)L
a − τ(Z̄Ma + ZM̄a)L

a (A.6)

−(τZ̄La + τ̄ZL̄a)Ma + τ(Z̄La + ZL̄a)Ma

+(τ̄ Z̄0IDIMa + τZ0ID̄IM̄a)L
a − τ(Z̄0IDIMa + Z0ID̄IM̄a)L

a

−(τ̄ Z̄0IDIL
a + τZ0ID̄I L̄

a)Ma + τ(Z̄0IDIL
a + Z0ID̄I L̄

a)Ma

= Z(τ − τ̄)(L̄aMa − LaM̄a) − (τ − τ̄)Z̄0I(LaDIMa −MaDIL
a)

= −iZ(τ − τ̄) eK(τ) − (τ − τ̄)Z̄0iLa(N̄ab −Nab)DiL
b = Z ,

where we have used that La(N̄ab −Nab)DiL
b = 0, as shown in section 4 (see (4.13)), and

also that i(L̄aMa − LaM̄a) = eK(τ) with K(τ) = − ln[−i(τ − τ̄)]. This completes the proof.

26Another example of fake solutions is the following: Obviously, one can generate an infinite number

of solutions of DiZ = 0 by multiplying the right-hand side of (A.1) by an arbitrary constant (or even a

function) c. However, those putative solutions would not be compatible with (A.5), unless c = 1.
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